2015 Space Weather Workshop

Impact of FORMOSAT-7/COSMIC-2 on Ionospheric Space Weather Monitoring

- I-Te Lee¹, J. Y. Tiger Liu², Vicky Chu², G. S. Chang²
- 1. Meteorological R&D Center, Central Weather Bureau, Taipei, Taiwan
- 2. National Space Organization, Hsinchu, Taiwan

Millennium Hotel Ballroom, April 14, 2015

Content

- Mission Description
- Observing System Simulation
- Impact on Ionosphere Monitoring
- Ionospheric Data Assimilation
- Conclusion

FORMOSAT-3/COSMIC

- FORMOSAT-3/COSMIC Constellation was launch at 01:40 UTC, April 14, 2006 (Taiwan Time: April 15 2006) at Vandenberg Air Force Base, CA. Minotaur Launch
- Maneuvered into six different orbital planes (inclination ~72°) for optimal global coverage (at ~800 km altitude).
- Five out of Six satellites are in good health and providing science data.

GPS Radio Occultation

Distribution of occultation events observed by FORMOSAT-3

Ionospheric density distribution, signatures, and scintillation

FORMOSAT-7 Program

Global Real-time Weather (Meteorology) Space Weather (Ionosphere) Observation and Prediction

The FORMOSAT-7 Program is a Taiwan-U.S. collaboration mission between NSPO (National Space Organization) of Taiwan and the NOAA (National Oceanic and Atmospheric Administration) of the United States. The objective of the FORMOSAT-7 Program is to deploy an extended 12-satellite constellation to continue the FORMOSAT-3 Program to measure atmospheric and ionospheric soundings. Data from the satellites will be made freely available to the international scientific community in near real-time.

FORMOSAT-7 Program

FORMOSAT-7/COSMIC-2 2nd Launch inclination angle ~ 72 degrees (a) (b) Solar Panel 1st Launch **Precise Orbit Detemination** inclination angle ~ 24 degrees Antenna Tri GNSS receiver **Occultation Antenna Mission Orbital Planes** Toward the Earth ram direction

Configuration Overview

	FORMOSAT-3	FORM	OSAT-7
Exterior Design			
Sequence		1st Launch	2 nd Launch
Constellation	6	6 Mission Satellite	6 Mission Satellite + 1 NSPO-Built Satellite
Mission Orbit Altitude	800 km	520-550 km	720-750 km
Inclination Angle	72 °	24-28.5°	72 °
Mission Payload	GOX	TriG	
RO Signals	GPS	GPS, GLONASS, Galileo	

	FORMOSAT-7		
Exterior Design			
Sequence	1 st Launch	2 nd Launch	
Science Payload	U. S. Science Payloads:1.Radio Veacon Frequency Instrument2.Ion Velocity Meter	Taiwan Science Payload: Selection Criteria: 1.Radio Occultation Enhancement 2.Constellation operations 3.Heritage Design	
Data Product & Format	Same as FORMOSAT-3		
Launch Schedule	2016	2018 (TBD)	

Observing System Simulation

- Predicting occultation events of F7/C2 which receiving signals from 28 GPS and 24 GLONASS satellites with one second sampling rate, based on the geometry between F7/C2 and two GNSS systems.
- 2. Estimating tangent point position of occultation events stand for the electron density profile locations of F7/C2.
- 3. The profile locations of F3/C corresponding to **real retrieved profiles** which were collected on 8 April 2008.
- 4. The profile locations of F3/C and F7/C2 are used to extract electron density values from model simulation to serve as synthetic observations.

FORMOSAT-7 vs. FORMOSAT-3

With 6 satellites + GPS, 60 minutes

About 80-100 profiles per hour

With 12 satellites + TriG, 60 minutes

About 400 profiles per hour

FORMOSAT-3

Time: 00:00UT

Occ. Profiles: 089

(Real)

FORMOSAT-7

Time: 00:00UT

Occ. Profiles: 629

(Simulation)

Colors of dots indicate electron density of foF2.

Ionospheric Weather Monitoring

Latitudinal slices are at -120°, -60°, 0° 60° and 120° longitude with a interval of ±2.5°.

- Solar activity variations
- Seasonal variations
- Monthly variations
- Tidal effects
- Diurnal variations
- Semi-diurnal variations
- Disturbed period effects
- Other temporal variations
- Irregularities

Could it be advanced by F7?

Simulated F7 observations at 08:00 UT within 1 hour x 1 day accumulation period x 10 750 -650 4.75 Altitude, km 550 450 4.25 350 250 3.75 150 12 satellites, 3.5 2.75 2.75 Electron Density, #/cm³ 28 GPS and **24 GLONAAA** 500km 400km 2 1.75 1.5 1.25 300km 0.75 0.5

-30

-120

-150

-180

Lee et al. [2013]

120

0.25

180

150

Longitude, °E

Ionospheric Data Assimilation

Period: 09:00 UT –20:00 UT

Assimilation System: NCAR TIE-CGM + DART

Observation range: from 160 to 450 km with a 10 km step

Localization function: Gaspari-Cohn function

Assimilation window: 60 minutes

Ensemble members: 90 members

Synthetic observations are extracted from model truth.

Matsuo and Araujo-Pradere [2011], Lee et al. [2012, 2013], Matsuo et al. [2013], Hsu et al. [2014]

Electron

Density

Profiles

Summary

- FORMOSAT-7 satellites will daily provide nearly 12,000 occultation events which is about four times more than that provided by the F3/C mission.
- FORMOSAT-7 allows for the capability to reconstruct the 3D ionospheric electron density structures for ionospheric space weather monitoring within a dramatically short data accumulation period.
- FORMOSAT-7 will open a new chapter and have an especially significant impact on the ionospheric weather monitoring, greatly benefitting the ionospheric date assimilation for future space weather forecasting.

Thank You for Your Attention.

